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ABSTRACT

Nowadays many surveillance systems are composed of several sensors to improve information one
can obtained from a target. Depending on constellation of sensors and target, the performance of
detection, localization, recognition, and tracking is improved dramatically. In particular a sensor
network with distributed transmit and receive nodes can increase the probability to survive if any
individual sensor node fails and the vulnerability against any electronic or physical attack is reduced
[1]. Networks of homogeneous sensors even promote new processing concepts like multiple-input
multiple-output (MIMO) or compressive sensing for data fusion and parameter estimation.

The objective of this lecture is to establish fundamental understanding of multi sensor systems to
stimulate new concepts, theories, and applications in this area, and to provide a background to the
following lectures of this series.

1 Introduction

Networks with multiple sensors promise to enhance existing surveillance systems in many aspects,
which make them an active area of research for many researchers and practitioners. For instance,
if many sensors are involved in a network the capability of this system to survive increases if any
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2 Radar Network

Besides the category of heterogeneous and homogeneous networks a further classification can be
introduced to distinguish between them as:

• co-located sensor network and
• distributed sensor network.

Any combination of these first categories is practical, but in general different types of sensors are
located nearby to ensure that the same area is observed. An example of a co-located homogeneous
sensor network is a virtual linear array antenna, composed of several transmit and receive antennas
grouped along a straight line [12]. For such configuration the signal processing has to be performed by
a central processing unit, which ensures that the network operates coherently. A common architecture
of distributed multi-sensor networks is to install a pre-processing at each receiver node and transfer the
results over a high-speed communication link to a central processing stage for data fusion. Depending
on the signal bandwidth, the complexity of the distributed network and on the communication link
among the nodes and the central unit, also a central processing solution may be feasible [13].

The interests of system designers in distributed radar networks are seen in their enormous potential.
Besides relatively simple designs, such as the case with a single illuminator and two receivers, ex-
tremely complex geometries can be constructed, with high demand on communication, processing
and complex algorithms.

Examining the transmitter and receiver operation, a multistatic homogeneous network can be split
into three principle categories of operation:

1. monostatic operation,
2. bistatic operation, and
3. any combination of the first two categories.

In the monostatic case, each node transmits a specific signal and receives and evaluates only the echo
generated by his own signal. In a multistatic radar network a minimum of one illuminator and N
spatially separated receivers observe a common area. In fact each transmit-receive pair is a bistatic
radar. In the general case each network node acts as a transmitter and as a receiver and represents a
fully MIMO radar system. Here, the receiver accepts echoes from all reflected signals. A schematic
illustration of these different topologies is shown in Fig. 3.

A further categorisation is applicable, particularly if a node in the multistatic network is active, which
means it is transmitting a dedicated signal, or passive. In the passive mode the receiver exploits
illuminators of opportunity such as TV or radio broadcasts. Combining active and passive modes
enhances covert operation of the multistatic network. For locating jammer sources passive operation
in a network can be very useful. Jammers can be located with a multistatic radar network, based on
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A characteristic measure that describes a bistatic geometry is the bistatic angle β, which is the angle
between the two vectors from the target to TX and RX. It defines the position of the target on the
iso-range contour, as described in Fig. 4. The iso-range contours are for far away targets ellipses
with transmitter and receivers at the foci points. These contours changes to the well-known ovals of
Cassini for targets nearby ((Rt +Rr) < L).

3.1 Bi-/Multistatic Radar Equation

The radar equation for a multistatic system is derived in a similar way to that for a monostatic
radar. By the nature of a multistatic radar system, the potential SNR gains from all involved
transmit/receive-pairs by MN , where N is the number of transmitters and M is the number of re-
ceivers. In the simplest form this is for a non coherent system:

SNR =
N∑
i=1

M∑
n=1

PtGt(i)Gr(n)σb λ
2

(4π)3 k T0 b F R2
t (i)R

2
r(n)Lt

(1)

where Pt is the transmit power, λ is the radar wavelength, Gt(i) is the gain of the transmit antenna i,
Gr(n) is the gain of the receive antenna n, σb is the bistatic radar cross-section of the target, F is the
receiver noise figure, Rt is the transmitter-to-target range, Rr is the target-to-receiver range, k is the
Boltzmann’s constant, T0 is 290 K, b is the signal bandwidth, and Lt is the transmission loss. Each
transmit-receive pair contributes to the overall system SNR, resulting in the MN gain if all sensors
are synchronized and coherent signal processing takes place. In the non-coherent case the gain of the
multistatic radar network is only N .

Contours of constant SNR are loci corresponding to Rt(i)Rr(n) = const., which follow the lines
of ovals of Cassini [17]. For monostatic radars the contours of constant signal-to-noise ratio are just
circles for the 2-dimensional case or spheres centered on the radar in general.

3.2 Bistatic Range Resolution

The monostatic range resolution is defined by:

∆Rmono =
τp c0

2
=

c0
2 b

, (2)

with c0 the speed of propagation, τp the (compressed) pulse width, and b the bandwidth of the trans-
mitted signal.

This changes for a bistatic constellation as the contours of constant range are ellipse (R = Rt+Rr =

cont.), with transmitter and receiver as the two foci points, as Fig. 5 shows. In order to separate two
targets lying on different isorange contours they must be apart by [18]:

∆Rbistatic =
∆Rmono
cos(β/2)

(3)

For targets located on the transmitter-receiver baseline L the bistatic angle is β = 180◦ and, hence,
can not be resolved as the range resolution is infinity.
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3.5 Bistatic Doppler

The simple relation between motion of target and Doppler shift for a monostatic radar is no longer
valid for bistatic constellations where the transmitter and receiver might exhibit different movements,
as shown in Fig. 4. In general the equation can be quite complicated, as the time rate of change of the
total path length from transmitter-target-receiver has to be taken into account [15]:

fD =
1

λ

[
∂

∂ t
(Rt + Rr)

]
=

1

λ

[
∂Rt
∂ t

+
∂Rr
∂ t

]
(7)

In the simplest case when only the target is moving the Doppler shift fD can be determined by:

fD =
2 v

λ
cos(δ) cos(β/2) (8)

where v is the velocity of the target, λ is the radar wavelength, δ is the angle of the target velocity
with respect to the bisector of the transmitter-target-receiver angle, and β is the bistatic angle. Some
special cases of Eqn. (8) are shown in Tab. 1. Targets moving along the iso-range lines show zero
Doppler and a maximum Doppler will occur if they are moving orthogonal to the constant bistatic
range lines, which are ellipses for far away objects [17].

Table 1: Geometry dependent forms for Doppler shift of Eqn. (8)
β δ fD condition (geometry)

0◦ 0◦ (2v/λ) monostatic
0◦ − (2v/λ) cos(δ) monostatic

180◦ − 0 forward scatter
− ±90◦ 0 v⊥ bisector
− ±β/2 (2v/λ) cos2(β/2) v || TX or RX
− 0◦, 180◦ ±(2v/λ) cos(β/2) v || bisector
− 90◦ ± β/2 ∓(2v/λ) sin(β) v⊥ TX or RX LOS

In a radar network with distributed transmit and receive nodes a moving target will not exhibit zero
Doppler shift to all receiving sites simultaneously. For this reason radar networks outperforms mono-
static radar easily.

4 Getting deeper knowledge of the network

4.1 Ambiguity Function

An important tool to evaluate radar signal characteristics performance in terms of range and Doppler
resolution as well as clutter rejection is the ambiguity function. The concept of the ambiguity function
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was first introduced by Woodward [21]. It is a two dimensional function of time delay and Doppler
frequency χ(τ, fD) showing the absolute envelope of the output of the receiver matched filter when
the input to the filter is a Doppler shifted version of the original transmitted signal. The ambiguity
function is determined only by the properties of the received pulse and the matched filter, which
represents the transmitted pulse, and not any specific target scenario. There exist many definitions
of the ambiguity function. Several of them focus on narrowband signals and others are applicable
to describe the propagation delay and Doppler relationship of wideband signals [22]. For a complex
baseband signal s(t), which fulfils the narrowband condition 2vbT/c� 1, with v the target velocity, b
the signal bandwidth, T the pulse duration, and c the speed of propagation, the narrowband ambiguity
function is given by [21]:

∣∣χ(τ, fD)
∣∣ =

∣∣∣∣∣
∫ ∞
−∞

s(t) · s∗(t− τ) · ej2πfDt dt

∣∣∣∣∣ (9)

with ∗ denoting the complex conjugate and fD is the Doppler shift in frequency. An important as-
sumption for the target is that its scattering properties do not change over the pulse duration and with
the look angles and that it is only slowly manoeuvring.

Figure 8: Ambiguity function for a single
rectangular pulse (pulse width tp).

Figure 9: Ambiguity function of a train of 5
rectangular pulses.

The monostatic ambiguity function was developed for a single co-located transmit/receive pair and is
fairly well developed and understood [23]. It has been shown that the ambiguity function arises from
the detection and parameter estimation problems joined with a slowly fluctuating point target being
observed in additive white Gaussian noise. Fig. 8 shows the ambiguity function of a rectangular pulse
with a duration of τp of a monostatic radar. If the signal processing takes 5 pulses into account the
ambiguity function changes dramatically, as shown in Fig. 9.

For a bistatic geometry, the simple relationship between time delay τ and range r and target velocity
v and Doppler shift fD is no longer valid. Accordingly Tsao et al. [24] the bistatic ambiguity function
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is:

∣∣χ (RRH
, RRA

, vH , vA, θR, L)
∣∣ =

∣∣∣∣∣
∫
s(t− τA(RRA

, θR, L)) s∗(t− τH(RRH
, θR, L)) (10)

· e−j2π(fDH
(RRH

,θR,L)−fDA
(RRA

,θR,L)) t dt

∣∣∣∣∣
whereRR andRT are the ranges from the target to the receiver respectively to the transmitter, V is the
target radial velocity, θR is the angle of the target measured from the receiver, L is the bistatic baseline,
τ is the transmitter-target-receiver delay time, and the subscriptH andA denote the hypothesized and
actual values.

The important difference between the monostatic (9) and bistatic ambiguity function (10) is that the
geometrical layout of the transmitter, receiver and target are now taken into account. This has a sig-
nificant effect on the form of the ambiguity function and the resulting range and Doppler resolutions.

For a distributed radar network, which is nothing more than a composition of several transmit-receive-
pairs, the ambiguity function is formulated based on the bistatic ambiguity function. It is assumed
that the network is composed ofM transmitters andN receivers. In that case the network showsMN

bistatic pairs. To simplify the derivation of the multistatic ambiguity function the same assumptions
are made as for the bistatic ambiguity function. Furthermore, it is assumed that the network is coher-
ent. This implies that the echoes arriving at different time instances can be processed jointly. Similar
to the bistatic radar ambiguity analysis, the multistatic radar ambiguity function is developed by the
following three steps [13], [25]-[26]:

(i) For each transmitter-receiver-pair the bistatic ambiguity (10) function is calculated
(ii) Calculating a weighting factor according to received signal intensity

Pij =
PiGiGj λ

2σB
(4π)3R2

txi→tR
2
t→rxj

(11)

wij =
Pij

Max(Pij)
(12)

(iii) To formulate multistatic radar ambiguity function using the results from previous calculations:

χmulti =

∣∣∣∣∣ 1

M2N2

M∑
i=1

N∑
j=1

wijχij

∣∣∣∣∣
2

(13)

In a bi-/multistatic radar system with separated transmitters and receivers the ambiguity function
depends strongly on the constellation of nodes and target. For any further investigation the result
should be split into different plots. The first diagram shows the result of the location accuracy in the
x/y-plane where the second plot represents the solution for velocity and direction accuracy in a polar
plot.

Distributed Sensor Systems 

1 - 12 STO-EN-SET-235 





4.2 Target Localisation Accuracy

As already shown distributed sensor networks provide an improved target parameter estimation ca-
pability which makes them very attractive for system designers. In particular their increase of in-
formation content from each resolution cell, their improved angular resolution capability, and their
ability to separate multiple targets [27], [28] their improved parameter identification [29], and their
increased radar performance by exploiting radar cross section (RCS) diversity are very attractive for
surveillance applications [30]. Likewise distributed radar networks can handle slow moving targets
by exploiting Doppler estimates from multiple directions [31] and feature a highly accurate estimation
of target position [32], [33].

An important aspect is the achievable localization accuracy of objects for a given constellation of
transmitters and receivers in addition to system parameters such as signal bandwidth and antenna
beam. For the following we assume a given radar network consists of M transmit and N receive
nodes, which are located in the two-dimensional plane (x, y). The transmitters are located at Tk =

(xtk, ytk), with k = 1, ...,M , and the coordinates of the receivers are Rl = (xrl, yrl). All transmitted
signals are narrowband signals fulfilling the assumption of (b/fc)

2 � 1. The target at the position
X = (x, y) has a complex radar cross section ζ, which is stable over the aspect angle, and, hence,
the reflected signal from these targets possess a time delay τlk. With these assumptions the equivalent
low-pass received signal at receiver l can be described by:

rl(t) =
M∑
k=1

ζsk(t− τlk)e−j2πfcτlk + nl(t) , (14)

where nl(t) is the complex Gaussian white noise. The target location in the x/y-plane can be deter-
mined by the using the well-established multilateration principle, taking into account received signals
from three or more receivers to resolve any ambiguities. In Eq. (14) the time delays τlk , which are
determined by the location of the target, the transmitters, and receivers, are given by the following
relation:

rlk = Dl +Dk =
√

(xt − x)2 + (yt − y)2 +
√

(xr − x)2 + (yr − y)2 (15)

To determine the position accuracy for a given constellation we assume that the range measurement
in Eq. 15 has small errors. The linearising with a Taylor expansion around the target position [x, y]T

yields:

rlk + δlk = D1 +D2 =
√

(xt − x)2 + (yt − y)2 +
√

(xr − x)2 + (yr − y)2

(16)

= Rlk(x, y)
∣∣∣
@target

+

δ Rlk(x, y)

δx

∣∣∣
@target

· (x− xt) +
δ Rlk(x, y)

δy

∣∣∣
@target

· (y − yt) (17)
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The position error can be rewritten in a matrix form [34]:

δlk =

[
δ Rlk(x, y)

δx

∣∣∣
@target

δ Rlk(x, y)

δy

∣∣∣
@target

]
·

[
δx

δy

]
(18)

with

δlk =

[
δpx

δpy

]
δx =

[
δx

δy

]
(19)

Both error vectors are linked together via the transfer matrixH

δlk = Hδx ⇒ δx = H−1δlk (20)

The covariance matrix of a position error is defined by:

C(δx) = E
{
δxδ

T
x

}
= E

{
H−1δlkδlk

THT (−1)
}

= H−1C(δlk)H
T (−1) = (HTH)−1σ2UERE

(21)
where σUERE is the standard deviation from the user equivalent range error, which incorporates
range resolution, receiver noise, and timing error all expressed in units of distance. Assuming that the
measurement errors are independent and have similar average accuracy:

C(δlk) =

[
σ2p1 0

0 σp2

]
=

[
σ2UERE 0

0 σ2UERE

]
= I2x2 σ

2
UERE (22)

The components of the matrix (HTH)−1 quantify how range errors translate into components of the
covariance of δx.

A valuable tool for visualizing location accuracy which can be achieved by a distributed sensor net-
work is the Position Dilution of Precision (PDOP) mapping, which was originated with launching
the Loran-C navigation system and came into much wider usage with GPS [35]-[38]. The dilution of
precision can be interpreted as an expression which describes the impact of the positions of transmit
and receive nodes of a sensor network on the relationship between the estimated time delay and the
localization errors. Hence, plots of PDOP give a deep insight into the achievable localization accuracy
for a given distributed sensor network.

For each measurement error a corresponding dilution of precision can be defined. For the two dimen-
sional case, where X = (x, y), the horizontal dilution of precision (HDOP) is:

HDOP =

√
σ2x + σ2y
σ2UERE

(23)

where σ2x and σ2y are the variances of the localization on the x and y axis, respectively. A relation-
ship for HDOP is obtained in terms of the components of (HTH)−1 by expressing (HTH)−1 in
component form

HDOP =

√
σ2x + σ2y
σ2UERE

=

√
Tr{C}
σ2UERE

=

√
Tr
{(
HTH

)−1}
(24)
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5.1 Time Synchronisation

For range measurements synchronisation in time is needed between transmit and receive nodes and
typically an accuracy in the order of a fraction of the transmitted pulse τp is required. For a compress-
ible pulse, where more than one sinusoidal wave is transmitted, this is equal to τp = 1/b, with b the
signal bandwidth [15].

If the network nodes are not too far separated from each other synchronising the stable local oscillators
can be achieved by connecting them together by cable, fibre or direct communication link. If no
direct line of sight is available, time synchronisation can also be achieved via a scattering signal from
a persistent scatterer. A prerequisite is that the scattering volume is detected by transmit and receive
antenna lobes. This method is not suitable to stabilize two local oscillators via a phase-locked loop as
one can expect a large variation (jitter) in the time base if the scattering body moves, for instance by
gusts of wind.

Commercially available are a range of various qualities of stable oscillators ranging from a simple
quartz oscillators, temperature controlled quartz with single or double ovens for stable operating
temperature, to more expensive atomic clocks such as rubidium or caesium oscillators, as shown in
Tab. 2.

Table 2: Comparison of various stable oscillators at 10 MHz
TCXO OCXO OCXO(BVA) MCXO Rubidium Cesium GPS

temperature
stability 1·10−6 2·10−8 1·10−10 2·10−8 2·10−8 2·10−8 —
drift per day 1·10−8 1·10−10 5·10−12 5·10−11 5·10−13 3·10−14 3·10−14

short-time
stability σy(τ) 1·10−9 1·10−12 5·10−13 1·10−10 5·10−12 — —
1s 1·10−10 1·10−11 1·10−12 2·10−8 1·10−11 6·10−11 —
100 s 3·10−10 1·10−11 1·10−12 2·10−8 1·10−13 6·10−12 —
1 day 1·10−12 3·10−12 3·10−12 5·10−10 1·10−13 6·10−12 —
£@ 1Hz -50 -100 -122 -115 -80 -85 —
£@ 10Hz -80 -130 -137 -135 -98 -125 —
£@ 100Hz -110 -140 -145 -145 -137 -135 —
£@ 1kHz -120 -145 -156 -150 -150 -140 —

Due to the inherent aging and instability, the local references must be continuously re-synchronised
on a time interval, which depends on the required stability and coherence in the network. The stability
directly influences the coherent integration time in the sensor network.

If no direct synchronisation is possible, as the baseline is too large for any cable or fibre, or no line-
of-sight exists, the local oscillators of each network node can be indirectly synchronised by use of a
Global Navigation Satellite System (GNSS) which provides a highly stable time reference. This time
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exist in a multistatic network with several independent reference clocks. Particularly for detecting
slow moving targets which introduce a small Doppler shift a low phase noise close to the carrier is
very important for the Doppler processing.

5.2 Phase Synchronisation

For Doppler or moving target indication (MTI) processing there must exist phase coherence between
transmit and receive nodes, which enables the rejection of clutter or chaff. Phase coherence can be
obtained in the same ways as time coherence. Using indirect phase synchronisation, which is the
best solution, involves high-precision oscillators at the network nodes that are re-synchronised via the
1PPS provided by GNSS receivers. Over the whole coherent integration time τk the phase stability
has to be guaranteed and equal to ∆φ / 2πfτk [15]. For a ground based bistatic radar with a center
frequency of 3 GHz, a maximum phase deviation of ∆φ = 4◦ = 0, 07 rad and a coherent integration
time of ∆τk = 1 ms the required oscillators stability is 3.7 · 10−12. This requirement can be fulfilled
with a temperature-controlled crystal oscillator, as can be taken from Tab. 2.

If a line-of-sight exists phase synchronisation is obtainable by a direct signal. If the synchronisation
takes place with each transmitted pulse a phase stability can be reached of ∆φ / 2πf∆Trt, with ∆Trt

denoting the travelling time difference between transmitter-target-receiver and the direct signal. ∆φ

is the allowed phase difference in rad. If an accuracy of ∆φ = 4◦ = 0, 07 rad is requested at a center
frequency of f = 10 GHz and the time difference ∆Trt = 1 ms (∆rrt = 300 km) the oscillator must
have a stability of 10−9, which can easily be achieved by a simple quartz oscillator.

6 Conclusion

This tutorial has attempted to provide an introduction to distributed sensor systems, in particular in
radar. Current interest in multistatic radar networks are high as bistatic approaches provides solutions
to several problems relating to monostatic systems. Due to technology progress over recent years in
signal processing, synchronization, wireless communications, and navigation, practical systems are
deployed and operated around the world.
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